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Resolving a.Mixture of Strategies in

Spatial Visualization Tasks

Abstract

The models of standard test theory, having evolved under a

trait-oriented psychology, do not reflect the knowledge structures

and the problem-solving strategies now seen as central to

understanding performance and learning. In some applications,

however, key qualitative distinctions among persons as to

structures and strategies can be expressed through mixtures of

test theory models, drawing upon substantive theory to delineate

the components of the mixture. This approach is illustrated with

response latencies to spatial visualization tasks that can be

solved by mental rotation or by a nonspatial rule-based strategy.

It is assumed that a subject employs the same strategy on all

tasks, but the possibility of extending the approach to strategy-

switching is discussed.

Key words: EM algorithm, item-solving strategies, mental

rotation, mixture models, spatial visualization.



Introduction

Recent research in cognitive and educational psychology

reveals the central role of strategies, mental models, and

knowledge structures in learning and problem-solving. Clancy

(1986) describes the shift in perspective to "describing mental

processes, rather than quantifying performance with respect to

stimulus variables." To this task, standard test theory, with its

focus on overall level of proficiency, is ill suited.

Consider as an example a test in which different persons

employ different solution strategies. By characterizing examinees

simply in terms of their propensities to make correct responses,

the models of standard test theory (item response theory [IRT] as

well as classical test theory) cloud analyses in several ways:

information about subjects' mental processes is obscured,

relationships between tasks' features and difficulties are

confounded with strategy choice, and comparisons of subjects in

terms of overall proficiencies are equivocal.

Mislevy and Verhelst's (in press) mixture model approach to

test theory can be employed to handle certain distinctions of this

type, as when different subjects employ different solution

strategies. The following assumptions are made:

1. Potential strategies can be delineated a priori.

2. An examinee uses the same strategy on all tasks.

1
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3. An examinee's responses are observed directly but strategy

choice is not.

4. The responses of examinees following a given strategy conform

to a response model of a known form, possibly characterized

by unknown parameters.

5. For each strategy, psychological or substantive theory

delineates relationships between the observable features and

the difficulties of tasks.

The present paper illustrates this approach by modelling

response latencies for spatial rotation tasks that can be solved

by either a rotational or a rule-based strategy. Simplified

versions of processing models from the visualization literature

are the basis of inference about strategy usage. An empirical

Bayesian approach provides maximum likelihood estimates of the

"structural" parameters of the problem and, for each subject,

posterior probabilities of membership in each strategy class and

conditional estimates of proficiency under each.

The Data

The data were gathered with a computer administered test of

what are typically called "mental rotation tasks." This area was

selected by virtue of its long history of research in both

psychometrics (e.g., Michael, Guilford, Fruchter, & Zimmerman,

1957; Thurstone, 1938) and cognitive psychology (e.g., Just

Carpenter, 1985; Lohman, Pellegrino, Alderton, & Regian, 1987).

Of particular interest is the finding that tasks of some tests

2



designed to measure spatial visualization abilities can be solved

with nonspatial, analytic strategies (French, 1965; Kyllonen,

Lohman, & Snow, 1984; Pellegrino, Mumaw, & Shute, 1985).

The tasks addressed in this paper concern a right-angled

triangle whose vertical height was 150 units on a computer

presentation screen, and whose horizontal side adjacent to the

right angle was 80, 100, 120, or 140 units (see Figure 1). The

model triangle was presented on the top half of the screen.

Immediately below it was a second triangle whose sides were

identical in size, but which had been rotated from the vertical by

40, 80, 120, or 160 degrees. This target was either an exact

match to the original or a mirror-image, and the subject was

instructed to indicate whether the two triangles were the same or

different. Response latency and correctness were recorded. The

stimulus set was constructed from the Cartesian product of four

factors: side lengths (4), rotations (4), identical or mirror-

image (2), and hypotenuse of the model triangle left or right of

the vertical (2), for 64 distinct stimuli in total. Because

systematic differences are found routinely between patterns on

rotations tasks whose correct answer is "same" compared to those

for which the correct answer is "different" (e.g., Cooper &

Podgorny, 1976), we address only the 32 stimuli in which the

target triangle is identical to the model.

[Figure 1 about here]

Subjects were male recruits to the British Army, between 18

and 24 years of age, undergoing selection and allocation in the

3
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Army Personnel Selection Centre. They were tested throughout by a

single presenter during the week of October 17, 1988. They were

assigned in groups of approximately 40 subjects by daily cohort of

recruits to one of three experimental groups. All groups were

presented two replications of the entire task set, but they

received different instructions. Two groups started under the

"standard testing condition" described below, and the third group

was additionally shown a nonspatial rule-based strategy for

solving the tasks. One of the two standard groups was given the

rule-based strategy instruction before their second replication,

but because only data from the first replication is addressed

here, the two standard groups will not be distinguished.

The standard testing condition was derived from the customary

way of demonstrating this class of rotational tasks to naive

subjects. An overhead projector was used to display two cardboard

right triangles vertically, as in Figure 1, creating solid black

images on a white background. The bottom triangle was rotated to

several positions to show that it could be "shuffled around on the

page" to match the top one. It was physically lifted to show that

it could be fitted exactly over the top one. By similar means,

the mirror image of the top triangle was shown to be different

from the top one, no matter how it was moved about in the plane.

The same demonstration was given for both the hypotenuse-left and

hypotenuse-right versions of the original stimulus. This

introduction was devised to encourage the subjects to use a mental

rotation strategy for problem solution, a strategy described by

4
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Shepard and Meltzer (1971) as "isomorphic." Under this strategy,

degree of rotation is a primary determine' of task difficulty, in

terms of both response latency (Shepard & Meltzer, 1971) and

accuracy (Tapley & Bryden, 1977).

The second experimental condition was devised to encourage

the use of an "analytic" or "rule-based" strategy. Such

strategies employ procedural learning rules rather than mental

visualization to determine correct answers. Subjects were shown

how to judge whether the target was identical or mirror-image of

the model by attending to a specific feature of the triangle,

namely the length of the side clockwise adjacent to the right

angle. The triangles are different if one encounters the long

side of one triangle but the short side of the other. It can be

hypothesized that under this strategy, difficulty is nearly

independent of the degree of rotation, but depends primarily on

the saliency of the key feature; that is, the strategy should be

more difficult to implement as the right triangle becomes more

nearly isosceles.

The rule was derived by asking British Naval Engineering

cadets at the Royal Naval Engineering College at Plymouth how they

habitually solved such tasks. While some replied they knew just

by looking at them (i.e., their strategies were not consciously

available), others said they never rotated the objects themselves;

they instead moved their gaze around the model from a fixed point

on it, noting the presence or absence of some salient feature.

They then found the same starting point on the target and checked

5



for the presence or absence of the feature. If it was there, the

target had to be the same as the model. If not, it had to be

different.

Data from 244 subjects were initially made available for this

study. The analyses reported here concern the 196 remaining after

trimming those with the highest and the lowest 10-percent of

within task-type variance, as pooled over the 16 rotation/side-

length pairs, so as to leave the remaining 80-percent nearly

homoscedastic with respect to this component of variation. Of

these, 131 had not been instructed in the rule and 65 had. Note

that the 2:1 ratio reflects equal trimming of noninstructed and

instructed subjects.

Figures 2 and 3 plot median latencies to "same" tasks against

coded angular displacement and side length, respectively.

Throughout the paper we work with natural logarithms of response

times, standardized over all tasks and subjects. Figure 2 shows

that average response latency tends to increase linearly with

angular displacement, which is coded as -1.5, -.5, .5, and 1.5

along the x-axis. The plot symbols are coded side lengths, from

shortest (most acute) to longest (most nearly isosceles) as -2.25,

-1.25, .75, and 2.75. Coding side length in these unequally

spaced intervals produces the nearly linear relationship shown in

Figure 3, where the x-axis gives coded side length and plot

symbols give coded angular displacements. Table 1 gives three

representative subjects' observed means, averaging over left- and

right-hypotenuse tasks within rotation and side-length.

6



[Figures 2 and 3 about here]

[Table 1 about here]

The Model

A mixture model for the data described above is laid out in

two phases. First is the response model, which concerns the

distribution of response latencies conditional on choice of

strategy and proficiency in using that strategy. Second is the

population model, which concerns the proportions of subjects that

employ the various strategies and the distributions of proficiency

within strategy classes. The generic model described below is for

a mixture of K strategy groups; a single strategy can be modelled

by setting K to one. After presenting the model, we give the

results of fitting three single-strategy models and a mixture of

two strategies.

The Response Model

Suppose that K potential strategies are available to solve

tasks in a test, and each subject uses one strategy exclusively on

all tasks. Each subject will be characterized by two vector-

valued unobservable variables. The first is the indicator

variable 0 (01,...,0K), where 0k takes the value 1 if Strategy k

is the one the subject uses, 0 if not. The second is

0 (91,...,0k), where Ok is proficiency under Strategy k. Only

one of the elements of 0 plays a role in producing the data

observed from a given subject, namely the one for which Ok-1.

Task j is characterized by the vector of difficulty parameters

7



(flii,...,fijK), where fijk determines the difficulty of Task j

for subjects who employ Strategy k.

We work with a log normal distribution for the response

latencyt.of a subject to Task j, given that Strategy k is

employed.Definingx.as /n t. and 6k as a scale parameter of the

log-normal density pertaining to Strategy k, the response model is

given by

where

f(x.I0,043.,(5) II fk(xil0k,fijk,6k)
k

kJ J [1]

f (x.I0 fl 6 )
1 1

fik j k' jk' k exp Lxj-kuk-jk)]
2

[2]

k "k

Thus [2] gives the density for log response time to Task j for a

subject employing Strategy k, with proficiency 0k under that

strategy. The difference (0k-fljk) is the mean and 6k is the

standard &aviation. Note that lower values of 0 signify faster

expected response times (i.e., more proficiency on the part of the

subject), while higher values imply slower response times. Lower

values of p signify slower expected response times (greater

difficulty on the part of the task), while higher values imply

faster response times. The product over k that appears in [1]

serves merely to select the f
k that applies, since 0

k
is 1 in this

case and 0 in all others. In the sequel fk(xiI0k,fijk,6k) will be

abbreviated at times as f
k
(x.I0

k), suppressing the dependence onj

fl
jk

and 6
k .

8
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Equations [1] and [2] posit individual differences among

subjects as to strategy selection and speed-within-strategy.

Individual differences corresponding to slopes might also be

entertained, but to do so here increases complexity without adding

insight into the inferential approach. We note in passing,

however, that recent studies suggest that at least some of the

slope differences among individuals found in standard analyses may

be related to the use of different strategies (Carter, Pazak, &

Kail, 1983; Just & Carpenter, 1985).

Psychological theory about what makes tasks easy or hard

under various strategies appears in the form of models for the

flik's. Following Scheiblechner (1972) and Fischer (1973), let sik

be a known vector of coefficients expressing the extent to which

Task j exhibits each of Mk features that determine task difficulty

under Strategy k; let ak be a parameter vector, also of length Mk,

that conveys the influence of those features. Assuming a linear

relationship between task features and task difficulty,

Mk
fijk - q a - qj a

kkm km -k -
m-1

j
[3]

For the rotational strategy, for example, angular

displacement is a major determiner of difficulty. Tasks rotated

to the four equally-spaced displacements will have q values for

this feature coded as -1.5, -.5, .5, or 1.5. The corresponding

element of a would indicate the incremental difficulty associated

with an increase of one additional unit of angular displacement.

9



.)r a strategy under which side length is posited to contribute to

difficulty, tasks will have q values of -2.25, -1.25, .75, or 2.75

that indicate the saliency of this key feature. The corresponding

element of a would reflect the additional difficulty resulting

from an additional increment toward being isosceles.

Task responses are assumed to be independent given a, 0 and

0. Letting x(xl,...,x
n) be a vector of log latencies to n tasks,

so that

P(xlek4kllak°5k) fk(xjjek) fk(lek)

kP(xI0,0,a,6) fk(xl0k) .

k
[4]

The Population Model

Suppose that subjects are a representative sample from a

population in which the proportion employing Strategy k is A-1,,

with 0<wk<1. Denote by A the vector (1(1,...,wid. Denote by

g
k
(0
k ) the density function of

k for members of Class k. We

assume normal distributions (although other distributions or even

nonparametric approximations could be used), so that gk(OkIpk,ak)

has the form

gk(°k1Ak'ak) r--

1 1exp 1- ----2- (0k-µk)2 .

2A
k 2a

k

For brevity, denote the population distribution parameters by I'

1' K) (14
1
so

1 K ,0K ).



Estimation

Equation [4] is the conditional probability of a response

pattern x, or the probability of observing x from a subject having

particular values of 0 and 0. Assuming the population model

described above, the probability of observing x from an examinee

selected at random, or the marginal probability of x, is given as

p(xla,6,r,r) - "k fk(xl0k,ak,6k) gk(Oklak) dOk. [5]

Let x - (x -1"."1SN ) be the response matrix of a random sample of N

subjects to n tasks. A realization of x induces the marginal

likelihood function for a, 6, it, and r as the product over

subjects of factors like [5]:

N
L(a,6,r,rlx) - II p(xila,6,r,r) .

i-1
[6]

We refer to a, 6, r, and r as the structural parameters of the

problem. Their number remains constant as N increases. The

incidental parameters 0 and 0, whose numbers increase in direct

proportion to N, have been eliminated by marginalizing over their

respective distributions. Marginal maximum likelihood (MML)

estimation finds the values of the structural parameters that
A A A A

maximize [6], say a, 6, r, and r. The Appendix gives a numerical

11
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solution for the present problem using Dempster, Laird, and

Rubin's (1977) EM algorithm. The solution is for data in which

strategy use is not known with certainty for any subject, as was

the case in the present study. If strategy-use infomation is

available for some subjects, however, as from follow-up interviews

with a subsample, estimates of structural parameters can be

improved--sometimes dramatically--by exploiting it (Titterington,

Smith, & Makov, 1985, Section 4.2).

Once MML estimates of structural parameters have been

obtained, one can obtain empirical Bayesian approximations of

probabilities of class membership for any examinee, and estimates

of 0
k condit!.onal on membership in any class k. If the structural

parameters were known with certainty, the posterior density for

Subject i would be

p(Ok,Ok-11xi,a05,w,r)

'rk fk(Wek'ark°5k) gk(eklak)

[7]
wh fh(xil0h,aho5h) gh(Ohloch) dOh

An empirical Bayes approximation substitutes MLEs for the

structural parameters. The posterior probability that Subject i

employed Strategy k, denoted Pik, is approximated as

A A A A

P
ik

P(0
k
11x.) 0-1Ix adwk' k i''''r) dek [8)

Conditional on membership in Class k, the posterior expectation

and variance of 0
k are approximated as

121 S



r
A A A A

0
ik

xi E(0
k
10. -1 x.) P. 0

k
p(0

k'
0
k
-11x.,a,6,,r) d0

k
[9]

ik

-1
j

-
7r

and

Var(OklOik-1,xi)

2 2

Pik Ok P(81c4k-114'2'81E'E) dek 9ik
[10]

Single-Strategy Solutions

This section uses single-strategy solutions to illustrate Q

matrices, obtain baseline likelihood statistics, calculate task-

difficulty estimates under different models,. and give a feel for

the data by looking more closely at the subjects introduced in

Table 1. These solutions assume not only that a subject applies

the same strategy on all tasks, but that all subjects are applying

the same strategy. Three such solutions are considered:

1. Rule-based (difficulty depends on side length only),

2. Mental rotation without side-length effects (difficulty

depends on degree of rotation only), and

3. Mental rotation with side-length effects (difficulty depends

on both side length and degree of rotation).

Side-Length Only

Suppose that all subjects followed a rule-based strategy,

under which difficulty is determined by side length alone. Under

this scenario, the only systematic sources of variation in

13



response times are subjects' overall proficiencies and tasks'

differing side lengths. Proficiency is denoted by the univariate

variable 6, assumed to follow a normal distribution whose mean p

and standard deviation a are to be estimated. Task difficulty is

given as Pi qji al, where qji is the co..ied side-length of task j

(-2.25, -1.25, .75, or 2.75), and al is the change in difficulty

associated with an additional increment in side length toward

isosceles. Finally, 6 is the standard deviation of log response

time within task type and subject.

The first panel of Table 2 gives the MLEs of the structural

parameters. The value of -2 log likelihood, or -2 in E p(xi),

also appears, which will be used to compare the fit of alternative

models. The estimate of a
1

is -.124, which translates into

expected increases in response latency as side length increases.

The first panel of Table 3 gives the resulting fis, with higher

values corresponding to faster response times and lower numbers

corresponding to slower ones. The modelled standardized log

latency of a particular subject on a particular task type under

this model would be obtained by subtracting the task's 0 value

from that subject's 0 value--thereby maintaining for all subjects

the pattern of increasing difficulty with increasing side length

without effects of degree of rotation.

[Insert Tables 2 and 3 about here]

This pattern is illustrated with the subject whose observed

means data appear in the second panel of Table 1. The Bayes

estimate 0 is -.317, a measure of overall proficiency. Combining



B with the fis gives the modelled latencies in the second panel of

Table 4. The third panel gives residuals, which indicate faster

averages than expected in some cells, slower in others, but no

systematic trend in average residuals in either the side-length or

rotation margins. (The residuals do not sum to zero because the

expectations were based on a Bayesian proficiency estimate, as

opposed to, say, least-squares within subject.) Table 5 gives

residuals for all three sample subjects. Note the strong trend

related to rotation for the last subject.

[Insert Tables 4 and 5 about here]

RotatIon Only

Even though the side-length model fits the data of subjects

like the second fairly well, the familiar relationship between

difficulty and degree of rotation appears in the residuals of

subjects like the fifth. An alternative simple model has

difficulty depend on rotation only, neglecting the possible impact

of differences in side-length. Under this model, fi q2j a2,

where q2j is the coded rotation of Task j (-1.5, -.5, .5, or 1.5)

and a
2

is the impact on difficulty of an additional 4ncrement in

rotation. The results of fitting this model appear in the second

panel of Table 2. The MLE of a
-2

is -.108, signalling increasing

difficulty as the degree of rotation increases. The resulting fis

are in the second panel of Table 3, showing patterns of expected

difficulty that depend on rotation alone.

The value of -2 log likelihood is 14907.78. To compare the

fit of alternative, possibly nonnested, models to the same data

15
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set, Akaike (1985) calculates the index AIC ("an information

criterion") for each model: -2 log likelihood plus twice the

number of parameters estimated. The model with the smaller L,IC is

preferred. AIC for rotation-only is 14907.78 + 2x4 14915.78.

AIC for side-length only, which also has four parameters, is

14432.40--smaller by 483. The side-length only model fits better

than the rotation only model.

Subject 0 estimates in this model combine with the fls to give

expected response latencies that maintain the same relative

relationships seen in the fis, but vary as to overall speed.

Subtracting such expectations calculated with Os from the observed

data gives the residuals shown in Table 6 for the sample subjects.

The third subject's strong linear trend in residuals associated

with rotation has been dampened considerably, but a reverse trend

in the rotation margin has been introduced for the first two

subjects. Note also the tendency toward a consistent ordering in

the side-length residuals.

[Table 6 about here]

Rotation and Side-Length

A final single-strategy model incorporates main effects for

both rotation and side-length: fii qii al + qi2 a2, where the qs

and as have the same meanings as in the preceding models. This

incorporates a more elaborate scenario for mental rotation,

allowing for latency to increase not only with degree of rotation,

but with the difficulty of comparison after rotation is complete

(Cooper & Podgorny, 1976). Parameter estimates and -2 log
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likelihood appear in the third panel of Table 2. Because of the
A

orthogonal experimental design, as are identical to those of the

previous single-feature models. AIC for this model is 14258.72,

smaller than the side-length AIC by 173 and smaller than the

rotation AIC by 661. The model incorporating both task features

thus fits better than both models with a single feature only, even

accounting for the additional parameters being estimated. The

resulting fis appear in the third panel of Table 3.

The residuals for the sample subjects are in Table 7.

Because of the orthogonal design, the rotation margins of the

residual tables under this model match the corresponding margins

under the rotation only model, and the side-length margins match

those from the side-length only model.

[Table 7 about here]

A Two-Strategy Solution

This model posits a mixture of two types of subjects: those

employing the rule-based strategy, whose response patterns can be

largely captured with the side-length only model, and those

employing mental rotation, whose responses depend on both side-

length and degree of rotation. There are ten parameters to

estimate in this model: the relative proportion of strategy use in

the sample; a mean, standard deviation, and within task-type

standard deviation for each strategy; an a for side-length for the

rule-based strategy component; and two as, one for side-length and

one for rotation, for the rotation strategy component. The
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estimates appear in the final panel of Table 2. AIC improves over

the rotation and side-length single-strategy model by 72.

Two distinct sets of fis result in this model, one for each

strategy. These appear in the last two panels of Table 3. The

side-only component, like the side length only single strategy

panel, shows only a side-length effect. Interestingly, it is

smaller than the corresponding effect in the side-length single-

strategy model. The "side-length and rotation" component shows

both effects. Compared to the corresponding single strategy

solutions, both the side-length and the rotational effects are

stronger. The interpretation would be that decreasing the

distinctness of the salient feature of the stimulus hampers

subjects employing rotation more than those employing the rule.

The point of mixture modelling is that WP do not know with

certainty which subjects are employing which strategy. One of the

structural parameters is the proprtion using each; MLEs are 57-

percent for the rule-based strategy and 43- percent for the

rotational strategy. These values can be expressed as the

averages of subjects' posterior probabilities of being in one

strategy group or the other (Equation 8). The histograms in

Figure 4 show subjects' posterior probabilities for the rule-

based strategy. Most have probabilities below .2 or above .8,

indicating fairly good separation of the components of the

mixture. To put this in the context of the statistical literature

on mixtures (e.g., Titterington et al., 1985), Figure 5 gives the

histogram of a closely matching "mixture of homoscedastic Gaussian

18
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components" problem. The mixing probability is .55 and the

distance between the means of the components is 2.2 standard

deviations. The information about the mixing proportion is about

half what it would be if component membership were observable

(Hill, 1963). Figure 6 breaks the information from Figure 4 down

by whether subjects were shown the rule. The proportion of

instructed subjects whose responses are strongly allied with the

rule-based strategy is substantially higher--nearly half, as

compared to just a fourth of those not instructed.

(Insert Figures 4-6 about here)

Table 8 gives posterior probabilities and residuals for the

sample subjects. As suggested by patterns of residuals from the

single strategy models, the posterior probabilities of Subjects 1

and 2 are concentrated on Strategy 1, the rule-based strategy (Ps

of .98 and .70), and that of Subject 3 is concentrated on the

rotational strategy (P nearly 1.00). The main factor that

determines strategy assignment is the presence of a linear trend

related to rotation. Of secondary importance is the strength of

the trend related to side length, with stronger trend being

associated with the rotational strategy. The high probability of

the rule-based strategy for Subject 1 is a consequence of both a

lack of trend for rotation and a weak trend for side length in the

observed da;a (see Table 1).

For a decision-making problem that depends on identifying a

subject's strategy use, the strategy with the higher posterior

probability is the choice. For a problem that depends on

Avove-ron..-
.X{
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predicting future performance, the optimal prediction is a

mixture. For Subject 2, for example, predictions would be

calculated under both strategies, using the task parameters and

his posterior 0 distribution within each; these distinct

predictions would be averaged with weights of .70 for the rule-

based strategy and .30 for the rotational one. The predictions

for the residuals in Table 8 were calculated in this manner, using

conditional within-strategy posterior means for Os.

[Insert Table 8 about here]

Discussion

This presentation was meant to demonstrate how a mixture-

model approach can be incorporated into test theory to deal with

different problem solving approaches. We readily concede that the

psychological model for the visualization tasks is overly

simplistic. There are some ways it could be made more realistic

while preserving the assumption that a subject maintains the same

strategy throughout observation. These include modelling

subprocesses, relaxing distributional assumptionL, or

incorporating individual difference terms for residual variances

or sensitivity to rotational angles. But more substantial steps

toward reality lie beyond this framework.

It must first be admitted that the two strategies discussed

here do not exhaust the variety of approaches that subjects bring

to bear upon such tasks. They may be viewed as archetypes, one or

the other of which may be sufficiently close to a given subject's

data to provide a serviceable guide to selection or instruction.
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In applied work, analyses of subjects' fit and patterns of

residuals will be important to flag patterns that are not

modelled, either for special consideration if they are few in

number, or for incorporation into the model if they are recurrent.

Perhaps more importantly, we must consider the possibility of

strategy switching, or the violation of the assumption that a

subject follows the same strategy on all tasks. This assumption

may be reasonable if strategy is defined through knowledge

structures, so that response patterns associated with advanced

structures are not accessible to learners in earlier stages. An

example of this type is Siegler's analysis (1981) balance beam

tasks, where competence is increased by adding rules to a

repertoire in a largely predictable order. It may also be

reasonable if strategies associated with alternative mental models

of a domain are unlikely to coexist in a given subject.

The same assumption is less reasonable in a domain where

alternative strategies are available to the same subject, so that

the conditions and the frequency of strategy switching become

additional sources of individual difference. Kyllonen, Lohman,

and Snow (1984) note increasing use of non-spatial strategies as

mental rotation tasks become more difficult. A more appropriate

model in this case would characterize mixtures within subjects;

not just that a subject followed Strategy A or Strategy B, but

that she used Strategy A on 30-percent of the tasks and Strategy B

on 70-percent--and that the characteristics of tasks that were

relevant to her strategy choice were such-and-such. Given the
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vicissitudes of even the straight mixture model, it is clear that

modelling mixtures within subjects will require richer information

than the familiar correctness or response times, perhaps in the

form of response protocols, intermediate products, or physical

measures such as eye movement (as in Just & Carpenter, 1976).

It would appear that mixture models of the type illustrated

here have most promise in contexts where the qualitative

distinctions among persons are relatively few in number, stable

during the period of observation, and distinguishable in terms of

their implications for observable behavior. We have demonstrated

by example that the calculations in this case are tractable and

the mixtures can be resolved satisfactorily. Future work will

focus on a more general computational scheme and a broader variety

of more educationally relevant applications.
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Appendix: Estimating Structural Parameters via the EM Algorithm

Equation [5] is an "incomplete data" density function of the

form addressed by Dempster, Laird, and Rubin (1977) in "Maximum

likelihood from incomplete data via the EM algorithm." Estimating

the structural parameters would be straightforward if values of

the latent variables 0 and 0 could be observed from each subject

along with his or her response vector x; this would be a "complete

data" problem. The EM algorithm maximizes the incomplete-data

likelihood [6] iteratively. The E-step, or expectation step, of

each cycle, calculates the expectations of the summary statistics

that the complete-data problem would require, conditional on the

observed data and provisional estimates of the structural

parameters. The M-step, or maximization step, solves what looks

like a complete-data maximum likelihood problem using the

conditional expectations of summary statistics. The resulting

maxima for the structural parameters are improved estimates of the

incomplete-data solution, and serve as input to the next E-step.

We employ the variation of the EM algorithm suggested by

Mislevy and Verhelst (in press) to estimate the parameters of

mixtures of psychometric models. The integration that appears in

[5] is approximated by summation over a fixed grid of points. The

E-step calculates, for each examinee, conditional probabilities of

belonging to each component of the mixture (i.e., strategy class)

and, conditional on component membership, the probabilities that 0

takes various grid-point values. The grid points play the role of

weighted pseudo-data points in the M-step. Numerical integration
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could be avoided in the special case considered above, but the

approach described below also applies with alternative response

models and distributional forms.

Solving the "Complete Data" Problem

This section gives the ML solution for a, 6, and I' that

would obtain if values of 0 and 0 were observed for each subject

along with x. Among the Nk sampled subjects from Strategy Class

k, some number Liciik distinct values of 0 would be observed, say

Eskl for /-1,...,Lk. Define the following statistics:

o I
ik/'

an indicator variable that 'sakes the value 1 if Subject

i is in Strategy Class k and has proficiency Okl.

o Nk, the number of examinees observed to be in Class k:

N
k

- 0
ik

EE IE

o Nk the number of examinees in Class k with 0-0 :

N - I
k/ 11/

1

[Al]

[A2]

o xjk, the mean of 0-centered log latencies for Task j from

subjects in Class k:

xjk - N
k
1
E E (x

ij
-0
k2

) I
iki

i

[A3]

o s
2

k'
the ave..age square of 0-centered log latencies for Task

j

j from subjects in Class k:
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sjk 1
(x..-8 )2 I

ij k/ ik/ [A4]

The complete data likelihood for a, 6, it, and r that would be

induced by the observation of x, 0, and 0 can be written as

L
*
(a05,r,rix,0,0)

II P(Nklr) II P(NmiNk,a) II fk(xilekrak,6k)
Tim

,

X

whence the complete data log likelihood

*
£ (a 6 r,r1x,0,0) - 2 Nk log it, 2 N,"

2
log gk(ekilpk,ak)

+EZZIikx E log fic(xijlek2'416k)
i k /

[A5]

ML estimation for the complete data problem proceeds by solving

the likelihood equations, which are obtained by setting to zero

the first derivatives of [A5] with respect to each element of

(a,6,r,r). That is, for a generic element u of (a05,w,r),

al
*
(a,6,71-,r1x,0,0)

o
[A6)

au

For elements of r, one must impose the constraint that Erk-1,

say with a Lagrangian multiplier. One obtains a closed form

solution for the proportion of subjects in each strategy class:
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For elements of the population parameter vector r, the ML

estimates in the normal case are, for k-1,...,K,

and

-1
mk Nk 8

kt
N
k/

2 ,-1 \2
E

c2-14k1 ."k/
.e

For the parameters of the task response model,

A
-

k (2k2id 2k4

where r2. a
k

5-1nk] and xk (xlk"'"xnk)' and

A2 2 26kn-1 Zfr
s. +243 x. +fi.

kL jk jk jk j

[A7]

[A8]

[A9]

[A10]

[All]

Solving the "Incomplete Data" Problem

The likelihood equations in the incomplete-data problem, in

which 0 and 0 are pot observed, are the first derivatives of the
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log of the marainal likelihood function, [6], set to zero. Under

mild regularity conditions, these take the form of a data-weighted

average of the complete-data likelihood equations shown as [A6].

Letting ga,6,7r,rix) /n L(a,(5,71.,r1x), the incomplete-data

likelihood equation for a generic element u of (a05,7r,r) is

where

0

8 .2(a05,71-,rix)

8u

*
82 (a05,11-,r1x,o,ok=1)

E j p(0,0k-11x) dO , [Al2]
k au

pocle 6,,r)
p(o,01x) II 1 i''

0. a , ff

i p(x.laos,w,r)
[A13]

It is seen in [5] that evaluating tha denominator of [A13]

involves integration over the N(pk,ak) distributions. We

approximated these integrals via Gaussian quadrature. Tabled

values are obtained for L points 81,...,8L, with associated

weights Wl,...,WL. (We used L-80, ranging from -3 to +3).

Calculation proceeds as though these were the only possible values

for 0; I
ik/ indicates whether Subject i used Strategy k and had

proficiency 81.

In the incomplete-data problem, neither the values of 0
i
nor

ti are known, so neither are the lila values used to calculate
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summary statistics. If the values of the structural parameters I',

6, and a were known, however, it would be possible to calculate

the expected values of the Iik/s given xis as follows:

I
ik/

E(I. lx.,a,6,r,r)

MIL
wk WI f (x'143Pak°5k) gk(8/I7k)

E wh E Wr fh(xiler'ah'6h) gh(8217h)
h r

[A14]

In the E-step of the EM algorithm, one evaluates [A14] for

each i, k, and 1 using' provisional estimates of a, 6, r, and I'.

One then obtains expectations of the summary statistics defined in

2
[A1]-[A4], say Nk, NkI, xjk, and sjk. The grid values 82 in the

incomplete-data solution thus correspond to the observed d values

in the complete data solution.

In the M-step, one solves facsimiles of the complete data

likelihood equations, [A7]-[A11], with Nk, NkI, xjk, and sjk in

place of their observed counterparts. Cycles of E- and M-steps

continue until changes are suitably small. Convergence to a local

maximum is assured, except from initial values that lie on

boundaries of the parameter space (e.g., r1 -0). Repeated

solutions from different starting values help identify the global

maximum. Accelerating methods may be used if convergence is too

slow.

Equation [A14] will be recognized as an application of Bayes

theorem, giving the posterior probability that Oik-82 and Oik-1

after observing xi. The normalizing constant in the denominator
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is an approximation of p(xi) as given in 15]. During the E-step,

one may therefore accumulate the sum -2 E log p(xi) to track the

performance of improvement in fit over cycles, to examine the fit

obtained with various values of structural parameters, or to

compare the fit of alternative models.

Empirical Bayes Estimates of Examinee Parameters

The numerical approximations employed above to estimate

structural parameters can be used for subsequent empirical

Bayesian estimates for individual subjects. The expectations of

the indicator variables I. are evaluated via [A14] with MML

estimates of a, 8, 7r, and £. The empirical Bayes approximation of

probability of membership in Strategy Class k is given as

Pik mg P(0
ik
-11x.) E Iik2 [A15]

Conditional on membership in Class k, the posterior expectation of

0
ik is approximated as

0
ik

E(0. 10. 1 x) P. E 8
/

I
ik/

and the corresponding posterior variance is

Var(0. 10 .- 1,x. Pik
-1

E 82 Iik2 Oiklk iK )
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Table 1

Examples of Observed Standardized Mean Log Response Times

Subject 1

Rotation

Side Length 40 80 120 160 Average

80 -0.069 0.059 -0.508 -0.676 -0.299

100 -0.724 -0.483 -0.242 -0.383 -0.458

120 -0.591 -0.828 0.406 -0.993 -0.502

140 -0.288 -0.287 -0.485 -0.483 -0.386

Average -0.418 -0.385 -0.207 -0.634 -0.411

Within Cell Pooled Standard Deviation 0.779

Subject 2

Rotation

Side Length 40 80 120 160 Average

80 -1.692 -0.277 -1.012 -0.863 -0.961

100 0.705 0.514 -0.450 -0.871 -0.025

120 -1.082 -0.912 0.224 0.126 -0.411

140 0.661 0.015 -0.316 -0.035 0.081

Average -0.352 -0.165 -0.389 -0.411 -0.329

Within Cell Pooled Standard Deviation 0.713

Subject 3

Rotation

Side Length 40 80 120 160 Average

80 -0.413 -0.545 -0.192 -0.304 -0.363

100 -1.699 -1.849 -0.108 0.223 -0.858

120 -1.186 -0.'019 -0.189 0.966 -0.107

140 -0.451 -0.815 -0.525 0.404 -0.347

Average -0.937 -0.807 -0.254 0.322 -0.419

Within Cell Pooled Standard Deviation 0.687



Table 2

Parameter Estimates and -2 Log Likelihood

Side Length Only -2 log likelihood - 14424.40

a 6 a(1)

Rotation Only

0.000 0.645 0.726 -0.124

-2 log likelihood - 14907.78

a & a(2)

0.000 0.644 0.756 -0.108

Side Length and Rotation -2 log likelihood - 14248.72

a 6 a(1) a(2)

0.000 0.645 0.716 -0.124 -0.108

Two Strategy Model -2 log likelihood - 14167.03

Strategy r p a 6 a(1) a(2)

Rule .566 0.099 0.745 0.668 -0.104

Rotation .434 -0.129 0.455 0.753 -0.151 -0.219



Table 3

Task Difficulty Parameters

Sid;; Length Only Model

Rotation

Side Length 40 80 120 160

80 0.279 0.279 0.279 0.279

100 0.155 0.155 0.155 0.155

120 -0.093 -0.093 -0.093 -0.093

140 -0.341 -0.341 -0.341 -0.341

Rotation Only Model

Rotation

Side Length 40 80 120 160

80 0.162 0.054 -0.054 -0.162

100 0.162 0.054 -0.054 -0.162

120 0.162 0.054 -0.054 -0.162

140 0.162 0.054 -0.054 -0.162

Side Length and Rotation Model

Rotation

Side Length 40 80 120 160

80 0.441 0.333 0.225 0.117

100 0.317 0.209 0.101 -0.007

120 0.069 -0.039 -0.147 -0.255

140 -0.180 -0.287 -0.395 -0.503

(continued)



Table 3, continued

Task Difficulty Parameters

Two Strategy Model: Side Length Only Component

Rotation

Side Length 40 80 120 160

80 0.234 0.234 0.234 0.234

100 0.130 0.130 0.130 0.130

120 -0.078 -0.078 -0.078 -0.078

140 -0.286 -0.286 -0.286 -0.286

Two Strategy Model: Side Length and Rotation Component

Rotation

Side Length 40 80 120 160

80. 0.667 0.448 0.229 0.010

100 0.517 0.298 0.079 -0.140

120 0.215 -0.003 -0.222 -0.441

140 -0.086 -0.305 -0.524 -0.742

ISIIMMII.M1711113=1.MANS



Table 4

Modelling Subject 2 under Side Length Only

Observed Log Response Times

Rotation

Side Length 40 80 120 160 Average

80 -1.692 -0.277 -1.012 -0.863 -0.961

100 0.705 0.514 -0.450 -0.871 -0.025

120 -1.082 -0.912 0.224 0.126 -0.411

140 0.661 0.015 -0.316 -0.035 0.081

Average -0.352 -0.165 -0.389 -0.411 -0.329

- -.317

Modelled Log Response Times

Rotation

Side Length 40 80 120 160 Average

80 -0.599 -0.599 -0.599 -0.599 -0.599

100 -0.475 -0.475 -0.475 -0.475 -0.475

120 -0.227 -0.227 -0.227 -0.227 -0.227

140 0.021 0.021 0.021 0.021 0.021

Average

gesiduals

-0.320 -0.320 -0.320 -0.320 -0.320

Rotation

Side Length 40 80 120 160 Average

80 -1.096 0.319 -0.416 -0.267 -0.365

100 1.177 0.986 0.021 -0.399 0.446

120 -0.859 -0.689 0.447 0.350 -0.188

140 0.636 -0.010 -0.341 -0.060 0.056

Average -0.035 0.152 -0.072 -0.094 -0.013

Root Mean Square Error 0.619



Table 5

Residuals from Side Length Only Model

Subject 1 (6 - -.40)

Rotation

Side Length 40 80 120 160 Average

80 0.605 0.733 0.167 -0.002 0.376

100 -0.174 0.067 0.309 0.168 0.092

120 -0.289 -0.526 0.708 -0.691 -0.199

140 -0.234 -0.233 -0.431 -0.429 -0.332

Average -0.023 0.011 0.188 -0.238 -0.016

Root Mean Square Error 0.426

Subject 2 (0 - -.32)

Rotation

Side Length 40 80 120 160 Average

80 -1.096 0.319 -0.416 -0.267 -0.365

100 1.177 0.986 0.021 -0.399 0.446

120 -0.859 -0.689 0.447 0.350 -0.188

140 0.636 -0.010 -0.341 -0.060 0.056

Average -0.035 0.152 -0.072 -0.094 -0.013

Root Mean Square Error 0.619

Subject 3 (6 - -.40)

Rotation

Side Length 40 80 120 160 Average

80 0.269 0.138 0.490 0.379 0.319

100 -1.140 -1.291 0.450 0.781 -0.300

120 -0.877 0.290 0.121 1.276 0.203

140 -0.389 -0.753 -0.463 0.465 -0.285

Average -0.534 -0.404 0.149 0.725 -0.016

Root Mean Square Error 0.703



Table 6

Residuals from Rotation Only Model

Subject 1 (0 - -.39)

Rotation

Side Length 40 80 120 160 Average

80 0.487 0.507 -0.168 -0.444 0.095

100 -0.168 -0.035 0.098 -0.151 -0.064

120 -0.035 -0.380 0.746 -0.761 -0.108

140 0.268 0.162 -0.145 -0.251 0.009

Average 0.138 0.063 0.133 -0.402 -0.017

Root Mean Square Error 0.374

Subject 2 (0 - -.32)

Rotation

Side Length 40 80 120 160 Average

80 -1.215 0.093 -0.750 -0.710 -0.646

100 1.183 0.884 -0.189 -0.717 0.290

120 -0.605 -0.543 0.485 0.280 -0.096

140 1.138 0.384 -0.055 0.119 0.397

Average 0.125 0.205 -0.127 -0.257 -0.014

Root Mean Square Error 0.694

Subject 3 (9 - -.40)

Rotation

Side Length 40 80 120 160 Average

80 0.150 -0.089 0.155 -0.064 0.038

100 -1.135 -1.394 0.240 0.462 -0.457

120 -0.623 0.436 0.159 1.206 0.294

140 0.113 -0.359 -0.177 0.644 0.055

Average -0.374 -0.352 0.094 0.562 -0.017

Root Mean Square Error 0.623



Table 7

Residuals from Side Length and Rotation Model

Subject 1 (6 - -.40)

Rotation

Side Length 40 80 120 160 Average

80 0.768 0.788 0.113 -0.163 0.376

100 -0.012 0.122 0.255 0.006 0.093

120 -0.127 -0.471 0.654 -0.852 -0.199

140 -0.072 -0.178 -0.484 -0.591 -0.331

Average 0.139 0.065 0.135 -0.400 -0.015

Root Mean Square Error 0.457

Subject 2 (6 - -.32)

Rotation

Side Length 40 80 120 160 Average

80 -0.934 0.373 -0.469 -0.429 -0.365

100 1.339 1.040 -0.032 -0.561 0.447

120 -0.696 -0.634 0.393 0.188 -0.187

140 0.798 0.044 -0.395 -0.221 0.057

Average 0.127 0.206 -0.126 -0.256 -0.012

Root Mean Square Error 0.639

Subject 3 (8 - -.40)

Rotation

Side Length 40 80 120 160 Average

80 0.432 0.192 0.436 0.217 0.319

100 -0.978 -1.237 0.397 0.619 -0.300

120 -0.714 0.345 0.067 1.115 0.203

140 -0.227 -0.699 -0.517 0.304 -0.285

Average -0.372 -0.350 0.096 0.564 -0.016

Root Mean Square Error 0.626



Table 8

Residuals From Two Strategy Model

Subject 1 (P1 - .98, 01 - -.40; P2 - .02, 02 - -.39)

Rotation

Side Length 40 80 120 160 Average

80 0.571 0.695 0.124 -0.049 0.336

100 -0.188 0.048 0.285 0.140 0.071

120 -0.265 -0.506 0.723 -0.680 -0.182

140 -0.171 -0.174 -0.377 -0.380 -0.276

Average -0.013 0.016 0.189 -0.242 -0.013

Root Mean Square Error 0.405

Subject 2 (P1 - .70, 01 - -.32; P2 - .30, 02 ..- -.31)

Rotation

Side Length 40 80 120 160 Average

80 -1.011 0.338 -0.462 -0.380 -0.379

100 1.268 1.011 -0.019 -0.505 0.439

120 -0.755 -0.651 0.419 0.256 -0.183

140 0.752 0.040 -0.357 -0.141 0.074

Average 0.064 0.185 -0.105 -0.192 -0.012

Root Mean Square

Subject 3 (P1

Error

- .00, 01 - -.41; P2 - 1.00,

Rotation

0.629

02 - -.40)

Side Length 40 80 120 160 Average

80 0.650 0.300 0.433 0.103 0.371

100 -0.786 -1.156 C.367 0.479 -0.274

120 -0.575 0.373 -0.015 0.921 0.176

140 -0.140 -0.723 -0.652 0.058 -0.365

Average -0.213 -0.301 0.033 0.390 -0.023

Root Mean Square Error 0.577



Captions for Figures

1. A Sample Task

2. Median Standardized Log Response Time versus Rotation

3. Median Standardized Log Response Time versus Side Length

4. Posterior Probabilities of Use of Rule-Based Strategy

5. Posterior Probabilities of Component 1 Membership in a

Mixture of Two Gaussian Components

6. Posterior Probabilities of Use of Rule-Based Strategy,

Distinguishing Instructed and Noninstructed Subjects
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